Linked-list & Tree of Disjoint Sets

Kuan-Yu Chen ([t % %)

2019/05/08 @ TR-310-1, NTUST

Review

- Some applications involve grouping n distinct elements into a
collection of disjoint sets

- {1, 2,3}

- {4,5}

- {6}

- {1,3,5}

- {1, 2,3},{4,5},{6} are disjoint sets

- {1,2,3},{4,5},{6},{1, 3, 5} are not disjoint sets

 Letting x denote an object, an element in a set, we wish to
support the following operations

— MAKE-SET(x)
— UNION(x, y)
— FIND(x)

Linked-list of Disjoint Sets.

A simple way to implement a disjoint-set data structure is
using linked list

— Each set is represented by its own linked list

YYY f g d YYYY ¢ h e

head head

Y
Y
Y
Y
Y
Y

¥
N

tail tail

— The object for each set has attributes head, pointing to the first
object in the list, and tail, pointing to the last object

« Each object in the list contains a set member, a pointer to the next
object in the list, and a pointer back to the set object

 The representative is the set member in the first object in the list

Linked-list of Disjoint Sets..

— With this linked-list representation, both MAKE-SET and FIND-
SET are easy, requiring O(1) time
« For MAKE-SET(x), we create a new linked list whose only object
is x
« For FIND-SET(x), we just follow the pointer from x back to its set

object and then return the member in the object that head points
to

FIND-SET(g) would return f

head > @ —10> @ ——>

S
! tail ¢

Linked-list of Disjoint Sets...

« For UNION(x, y), we append list of y onto the end of list of x

We must update the pointer to the set object for each object
originally on y’s list

For example, the operation UNION(g, e), causes pointers to be

updated in the objects for b, c,e, and h

\A

A

head

tail

Y

Y

Y

YY)

A

head

h

Y

Y

tail

Y

Y

Y Y

A

A

A

head

tail

h

Y

Y

Y

Y

Y

Y

Y

Linked-list of Disjoint Sets....

« Suppose that we have objects x4, x5, "+, X,

— If we execute the sequence of n MAKE-SET operations followed
by n — 1 UNION operations incrementally

~ We should take ©(n?)

« Because we append a longer list onto a shorter list

Operation Number of objects updated
MAKE-SET(x1) 1
MAKE-SET(x2) 1
MAKE-SET(x;,) 1

UNION(x2, X1) 1

UNION(x3, X2) 2

UNION(x4, X3) 3

UNION(Xxz, Xp—1) n—1

— Weighted-union heuristic: we always append the shorter list
onto the longer list!

Disjoint-set Forests.

 In a faster implementation of disjoint sets, we represent sets
by rooted trees

— Each node containing one member and each tree representing
one set

— The root of each tree is the representative of the set

Disjoint-set Forests..

— MAKE-SET: simply creates a tree with just one node

— FIND-SET: performs a FIND-SET operation by following parent
pointers until we find the root of the tree

— UNION: causes the root of one tree to point to the root of the
other

T @ () (&)
0 (& O OEN®
0

Disjoint-set Forests...

« The path compression is quite simple and highly effective

— We use it during FIND-SET operations to make each node on

the find path point directly to the root

o If we perform FIND-SET(a) on the left tree, the path compression

will also perform

o Thus, after executing FIND-SET(a), each node on the find path

now points directly to the root

1
A
g
A
A

FIND-SET(x)

1 ifx#xp
2 x.p = FIND-SET(x.p)
3 return x.p

Disjoint-set Forests....

e The union-by-rank strategy
— Each node keeps track of its rank
« An upper bound on the height of the node

— To perform UNION, we link root with smaller rank to root with
larger rank

« When UNION is performed, only the rank of the roots may change

() () ()
(c)1 Ok ()

UNION(h, d)

OO0 a0 (&
(& W O @

10

Disjoint-set Forests.....

« The union-by-rank strategy algorithm
MAKE-SET(x)

Il x.p=x
2 x.rank = 0

UNION(x, y)
1 LINK(FIND-SET(x), FIND-SET(y))

LINK (X, y)

1 if x.rank > y.rank

2 y.p = X

3 elsex.p=y

4 if x.rank == y.rank

5 y.rank = y.rank + 1

Questions?

kychen@mail.ntust.edu.tw

12

	Linked-list & Tree of Disjoint Sets
	Review
	Linked-list of Disjoint Sets.
	Linked-list of Disjoint Sets..
	Linked-list of Disjoint Sets…
	Linked-list of Disjoint Sets….
	Disjoint-set Forests.
	Disjoint-set Forests..
	Disjoint-set Forests…
	Disjoint-set Forests….
	Disjoint-set Forests…..
	Questions?

