

Linked-list & Tree of Disjoint Sets

Kuan-Yu Chen (陳冠宇)

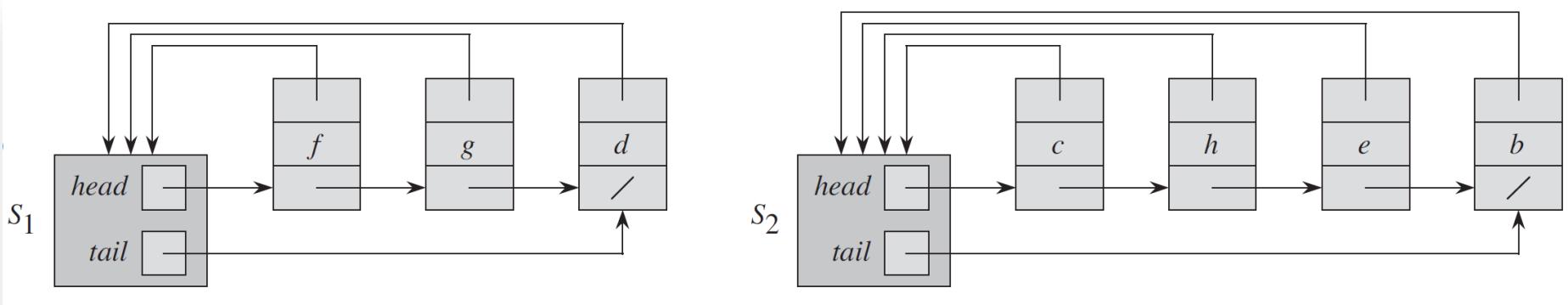
2019/05/08 @ TR-310-1, NTUST

Review

- Some applications involve grouping n distinct elements into a collection of disjoint sets
 - $\{1, 2, 3\}$
 - $\{4, 5\}$
 - $\{6\}$
 - $\{1, 3, 5\}$
 - $\{1, 2, 3\}, \{4, 5\}, \{6\}$ are disjoint sets
 - $\{1, 2, 3\}, \{4, 5\}, \{6\}, \{1, 3, 5\}$ are not disjoint sets
- Letting x denote an object, an element in a set, we wish to support the following operations
 - $\text{MAKE-SET}(x)$
 - $\text{UNION}(x, y)$
 - $\text{FIND}(x)$

Linked-list of Disjoint Sets.

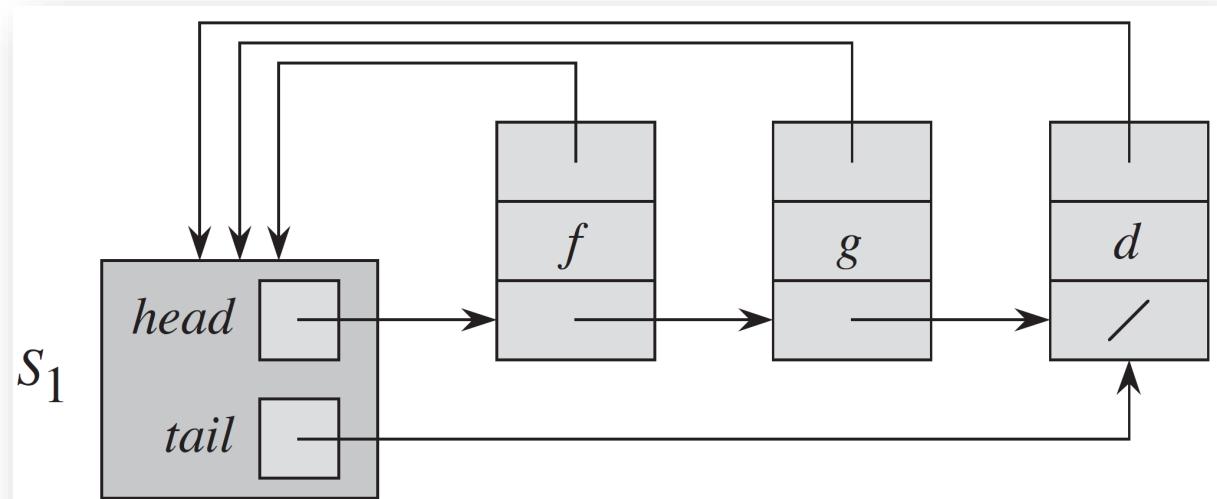
- A simple way to implement a disjoint-set data structure is using linked list
 - Each set is represented by its own linked list



- The object for each set has attributes ***head***, pointing to the first object in the list, and ***tail***, pointing to the last object
 - Each object in the list contains a set member, a pointer to the next object in the list, and a pointer back to the set object
 - The representative is the set member in the first object in the list

Linked-list of Disjoint Sets..

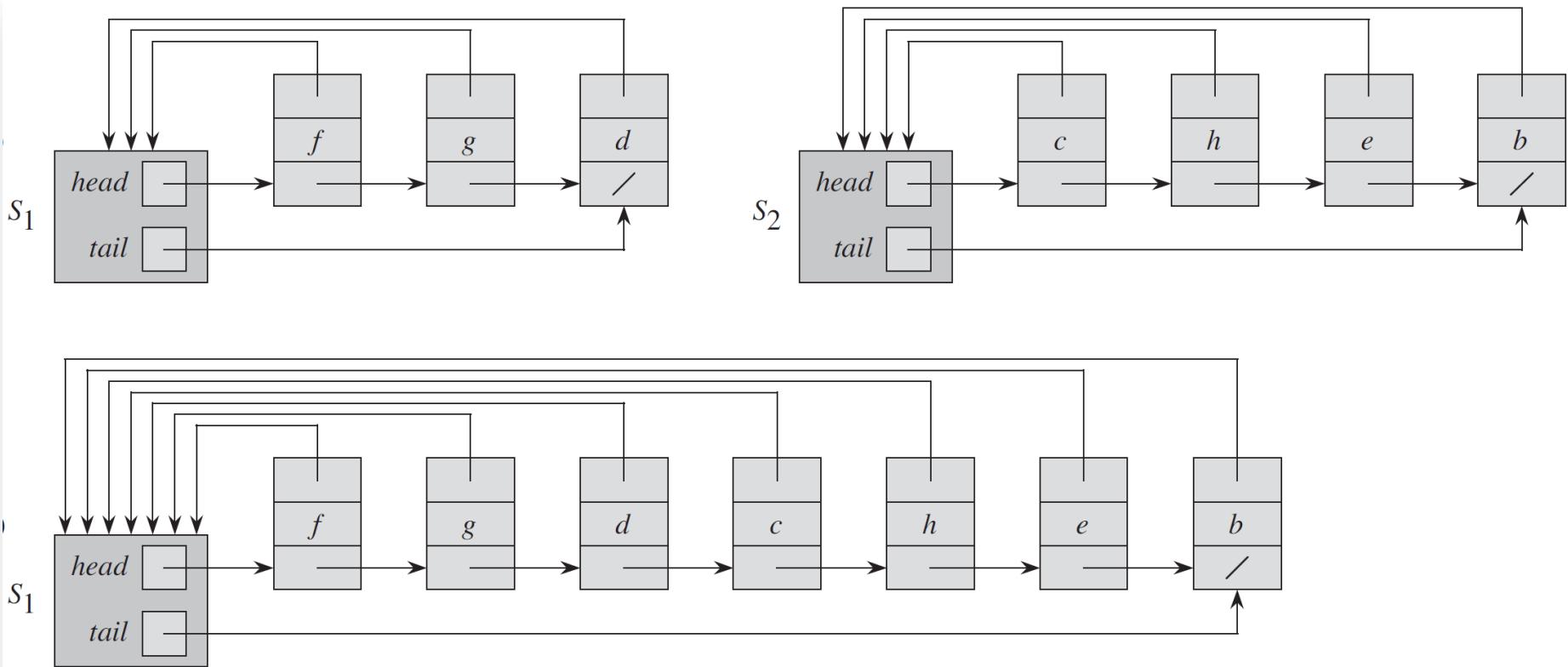
- With this linked-list representation, both MAKE-SET and FIND-SET are easy, requiring $O(1)$ time
 - For $\text{MAKE-SET}(x)$, we create a new linked list whose only object is x
 - For $\text{FIND-SET}(x)$, we just follow the pointer from x back to its set object and then return the member in the object that ***head*** points to
 $\text{FIND-SET}(g)$ would return f



Linked-list of Disjoint Sets...

- For $\text{UNION}(x, y)$, we append list of y onto the end of list of x
We must update the pointer to the set object for each object originally on y 's list

For example, the operation $\text{UNION}(g, e)$, causes pointers to be updated in the objects for b, c, e , and h



Linked-list of Disjoint Sets...

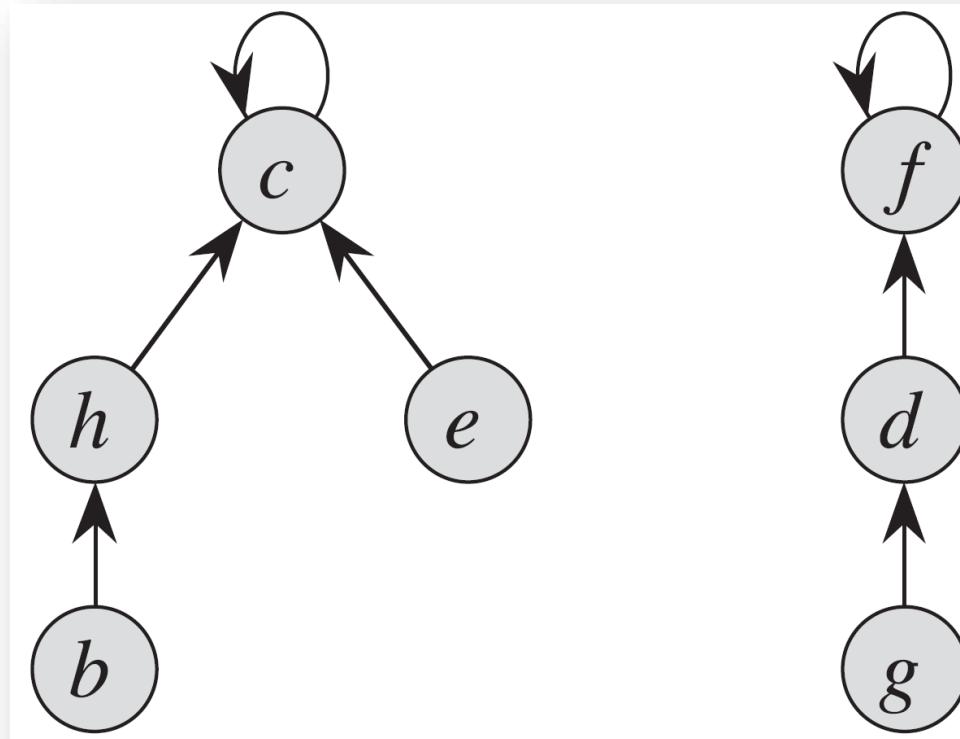
- Suppose that we have objects x_1, x_2, \dots, x_n
 - If we execute the sequence of n MAKE-SET operations followed by $n - 1$ UNION operations incrementally
 - We should take $\Theta(n^2)$
 - Because we append a longer list onto a shorter list

Operation	Number of objects updated
MAKE-SET(x_1)	1
MAKE-SET(x_2)	1
\vdots	\vdots
MAKE-SET(x_n)	1
UNION(x_2, x_1)	1
UNION(x_3, x_2)	2
UNION(x_4, x_3)	3
\vdots	\vdots
UNION(x_n, x_{n-1})	$n - 1$

- Weighted-union heuristic:** we always append the shorter list onto the longer list!

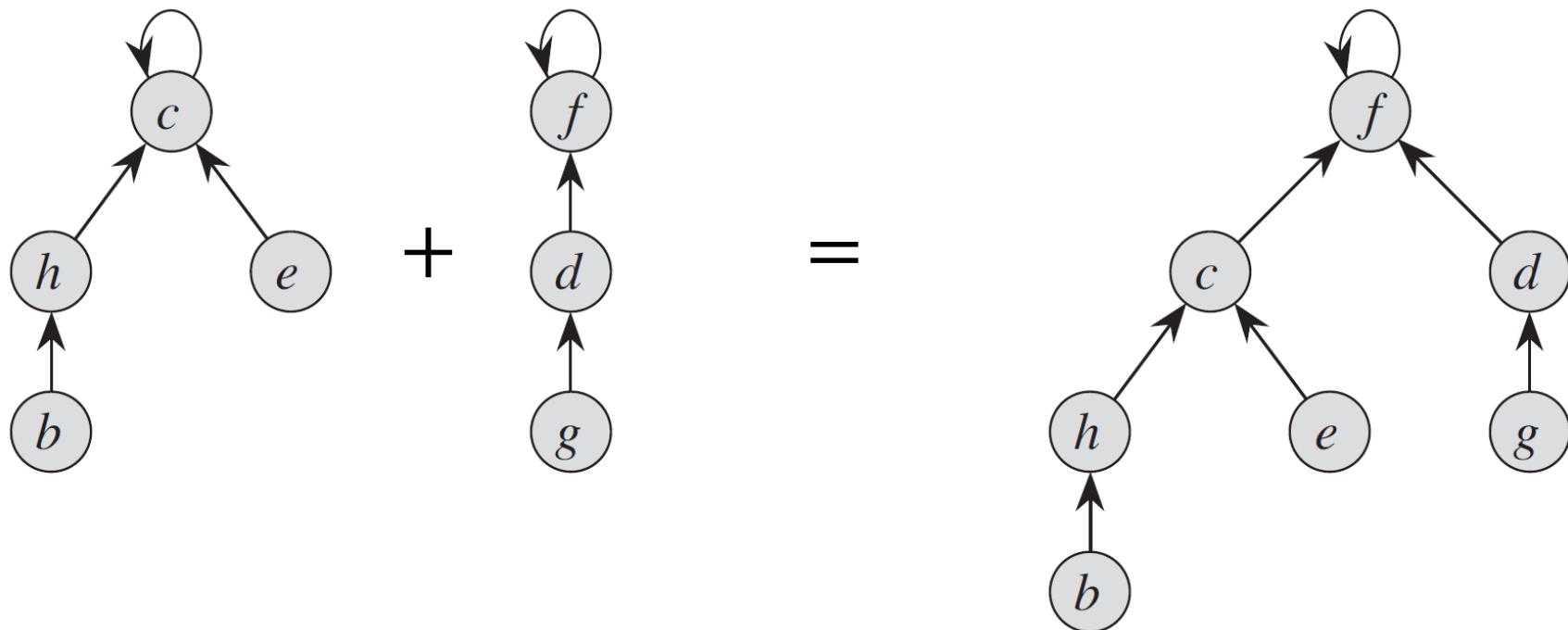
Disjoint-set Forests.

- In a faster implementation of disjoint sets, we represent sets by rooted trees
 - Each node containing one member and each tree representing one set
 - The root of each tree is the representative of the set



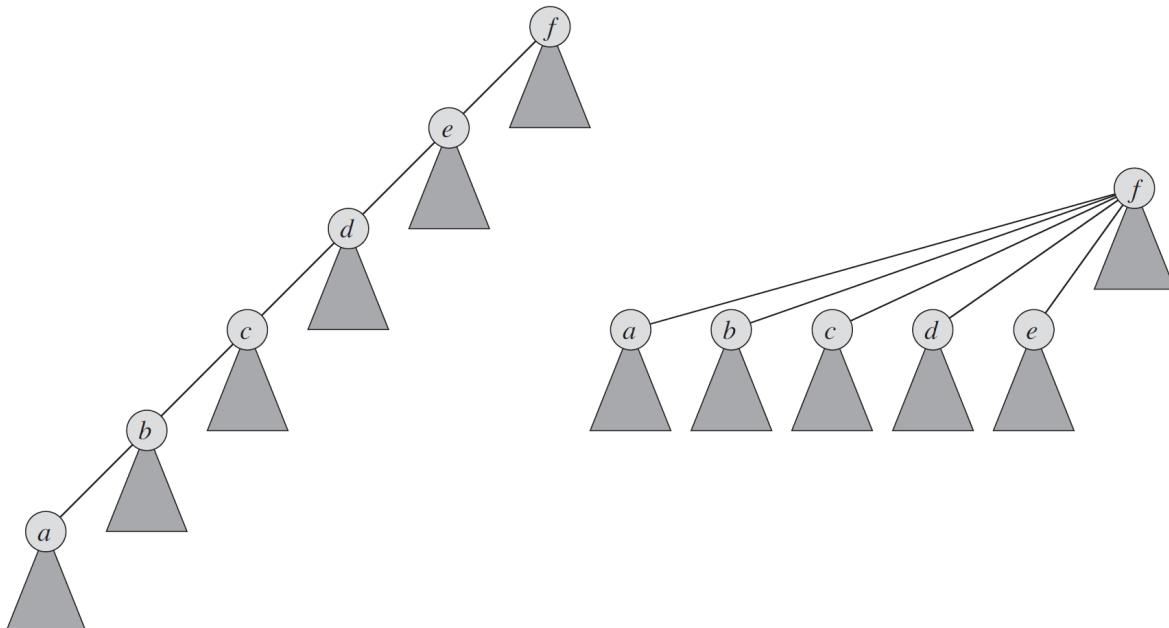
Disjoint-set Forests..

- MAKE-SET: simply creates a tree with just one node
- FIND-SET: performs a FIND-SET operation by following parent pointers until we find the root of the tree
- UNION: causes the root of one tree to point to the root of the other



Disjoint-set Forests...

- The ***path compression*** is quite simple and highly effective
 - We use it during FIND-SET operations to make each node on the find path point directly to the root
 - If we perform FIND-SET(a) on the left tree, the path compression will also perform
 - Thus, after executing FIND-SET(a), each node on the find path now points directly to the root

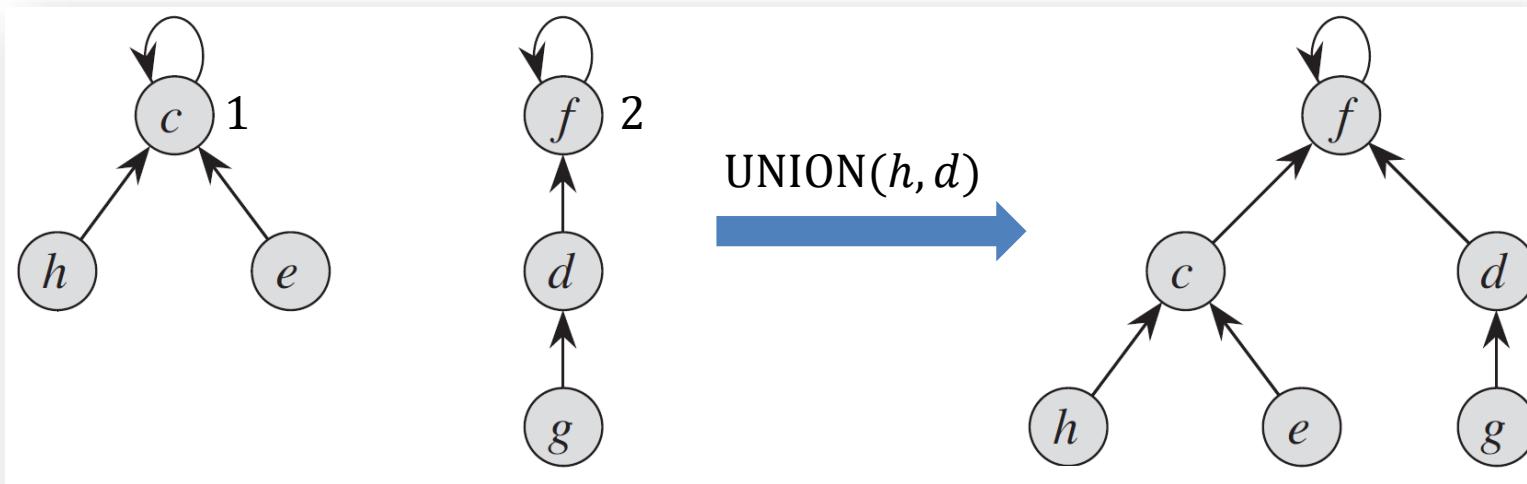


FIND-SET(x)

```
1  if  $x \neq x.p$   
2       $x.p = \text{FIND-SET}(x.p)$   
3  return  $x.p$ 
```

Disjoint-set Forests...

- The **union-by-rank** strategy
 - Each node keeps track of its rank
 - An upper bound on the height of the node
 - To perform UNION, we link root with smaller rank to root with larger rank
 - When UNION is performed, only the rank of the roots may change



Disjoint-set Forests....

- The union-by-rank strategy algorithm

MAKE-SET(x)

- 1 $x.p = x$
- 2 $x.rank = 0$

UNION(x, y)

- 1 LINK(FIND-SET(x), FIND-SET(y))

LINK(x, y)

- 1 **if** $x.rank > y.rank$
- 2 $y.p = x$
- 3 **else** $x.p = y$
- 4 **if** $x.rank == y.rank$
- 5 $y.rank = y.rank + 1$

Questions?

kychen@mail.ntust.edu.tw