
Linked-list & Tree of Disjoint Sets

Kuan-Yu Chen (陳冠宇)

2019/05/08 @ TR-310-1, NTUST



2

Review
• Some applications involve grouping 𝑛𝑛 distinct elements into a 

collection of disjoint sets
– 1, 2, 3
– 4, 5
– {6}
– {1, 3, 5}
– 1, 2, 3 , 4, 5 , 6 are disjoint sets
– 1, 2, 3 , 4, 5 , 6 , {1, 3, 5} are not disjoint sets

• Letting 𝑥𝑥 denote an object, an element in a set, we wish to 
support the following operations
– MAKE-SET(𝑥𝑥) 
– UNION(𝑥𝑥,𝑦𝑦) 
– FIND(𝑥𝑥)



3

Linked-list of Disjoint Sets.
• A simple way to implement a disjoint-set data structure is 

using linked list
– Each set is represented by its own linked list

– The object for each set has attributes head, pointing to the first 
object in the list, and tail, pointing to the last object

• Each object in the list contains a set member, a pointer to the next 
object in the list, and a pointer back to the set object

• The representative is the set member in the first object in the list



4

Linked-list of Disjoint Sets..
– With this linked-list representation, both MAKE-SET and FIND-

SET are easy, requiring O(1) time
• For MAKE-SET(𝑥𝑥), we create a new linked list whose only object 

is 𝑥𝑥
• For FIND-SET(𝑥𝑥), we just follow the pointer from 𝑥𝑥 back to its set 

object and then return the member in the object that head points 
to

FIND-SET(𝑔𝑔) would return 𝑓𝑓



5

Linked-list of Disjoint Sets…
• For UNION(𝑥𝑥,𝑦𝑦), we append list of 𝑦𝑦 onto the end of list of 𝑥𝑥

We must update the pointer to the set object for each object 
originally on 𝑦𝑦’s list

For example, the operation UNION(𝑔𝑔, 𝑒𝑒), causes pointers to be 
updated in the objects for 𝑏𝑏, 𝑐𝑐, 𝑒𝑒, and ℎ



6

Linked-list of Disjoint Sets….
• Suppose that we have objects 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛

– If we execute the sequence of 𝑛𝑛 MAKE-SET operations followed 
by 𝑛𝑛 − 1 UNION operations incrementally

– We should take Θ(𝑛𝑛2)
• Because we append a longer list onto a shorter list

– Weighted-union heuristic: we always append the shorter list 
onto the longer list!



7

Disjoint-set Forests.
• In a faster implementation of disjoint sets, we represent sets 

by rooted trees
– Each node containing one member and each tree representing 

one set
– The root of each tree is the representative of the set



8

Disjoint-set Forests..
– MAKE-SET: simply creates a tree with just one node
– FIND-SET: performs a FIND-SET operation by following parent 

pointers until we find the root of the tree
– UNION: causes the root of one tree to point to the root of the 

other

+ =



9

Disjoint-set Forests…
• The path compression is quite simple and highly effective

– We use it during FIND-SET operations to make each node on 
the find path point directly to the root

• If we perform FIND-SET(𝑎𝑎) on the left tree, the path compression 
will also perform

• Thus, after executing FIND-SET(𝑎𝑎), each node on the find path 
now points directly to the root



10

Disjoint-set Forests….
• The union-by-rank strategy

– Each node keeps track of its rank
• An upper bound on the height of the node

– To perform UNION, we link root with smaller rank to root with 
larger rank

• When UNION is performed, only the rank of the roots may change

UNION(ℎ,𝑑𝑑)
1 2



11

Disjoint-set Forests…..
• The union-by-rank strategy algorithm



12

Questions?

kychen@mail.ntust.edu.tw


	Linked-list & Tree of Disjoint Sets
	Review
	Linked-list of Disjoint Sets.
	Linked-list of Disjoint Sets..
	Linked-list of Disjoint Sets…
	Linked-list of Disjoint Sets….
	Disjoint-set Forests.
	Disjoint-set Forests..
	Disjoint-set Forests…
	Disjoint-set Forests….
	Disjoint-set Forests…..
	Questions?

